127 research outputs found

    Perturbation expansions at large order: Results for scalar field theories revisited

    Full text link
    The question of the asymptotic form of the perturbation expansion in scalar field theories is reconsidered. Renewed interest in the computation of terms in the epsilon-expansion, used to calculate critical exponents, has been frustrated by the differing and incompatible results for the high-order behaviour of the perturbation expansion reported in the literature. We identify the sources of the errors made in earlier papers, correct them, and obtain a consistent set of results. We focus on phi^4 theory, since this has been the most studied and is the most widely used, but we also briefly discuss analogous results for phi^N theory, with N>4. This reexamination of the structure of perturbation expansions raises issues concerning the renormalisation of non-perturbative effects and the nature of the Feynman diagrams at large order, which we discuss.Comment: 14 page

    Modes of competition and the fitness of evolved populations

    Get PDF
    Competition between individuals drives the evolution of whole species. Although the fittest individuals survive the longest and produce the most offspring, in some circumstances the resulting species may not be optimally fit. Here, using theoretical analysis and stochastic simulations of a simple model ecology, we show how the mode of competition can profoundly affect the fitness of evolved species. When individuals compete directly with one another, the adaptive dynamics framework provides accurate predictions for the number and distribution of species, which occupy positions of maximal fitness. By contrast, if competition is mediated by the consumption of a common resource then demographic noise leads to the stabilization of species with near minimal fitness.Comment: 11 pages, 6 figure

    Synchronisation of stochastic oscillators in biochemical systems

    Full text link
    A formalism is developed which describes the extent to which stochastic oscillations in biochemical models are synchronised. It is based on the calculation of the complex coherence function within the linear noise approximation. The method is illustrated on a simple example and then applied to study the synchronisation of chemical concentrations in social amoeba. The degree to which variation of rate constants in different cells and the volume of the cells affects synchronisation of the oscillations is explored, and the phase lag calculated. In all cases the analytical results are shown to be in good agreement with those obtained through numerical simulations

    Quasi-cycles in a spatial predator-prey model

    Full text link
    We show that spatial models of simple predator-prey interactions predict that predator and prey numbers oscillate in time and space. These oscillations are not seen in the deterministic versions of the models, but are due to stochastic fluctuations about the time-independent solutions of the deterministic equations which are amplified due to the existence of a resonance. We calculate the power spectra of the fluctuations analytically and show that they agree well with results obtained from stochastic simulations. This work extends the analysis of these quasi-cycles from that previously developed for well-mixed systems to spatial systems, and shows that the ideas and methods used for non-spatial models naturally generalize to the spatial case.Comment: 18 pages, 4 figure

    Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies

    Full text link
    We investigate a type of bistability where noise not only causes transitions between stable states, but also constructs the states themselves. We focus on the experimentally well-studied system of ants choosing between two food sources to illustrate the essential points, but the ideas are more general. The mean time for switching between the two bistable states of the system is calculated. This suggests a procedure for estimating, in a real system, the critical population size above which bistability ceases to occur.Comment: 8 pages, 5 figures. See also a "light-hearted" introduction: http://www.youtube.com/watch?v=m37Fe4qjeZ

    The statistics of fixation times for systems with recruitment

    Full text link
    We investigate the statistics of the time taken for a system driven by recruitment to reach fixation. Our model describes a series of experiments where a population is confronted with two identical options, resulting in the system fixating on one of the options. For a specific population size, we show that the time distribution behaves like an inverse Gaussian with an exponential decay. Varying the population size reveals that the timescale of the decay depends on the population size and allows the critical population number, below which fixation occurs, to be estimated from experimental data
    • …
    corecore